
Lossless Convexification for Linear Systems with
Piecewise Linear Controls

Shosuke Kiami
Department of Mathematics

University of California, Berkeley
shokiami@berkeley.edu

Abstract—Lossless Convexification (LCvx) is a convexification
technique that transforms a class of nonconvex optimal control
problems–where the nonconvexity arises from a lower bound on
the control norm–into equivalent convex problems, with the goal
being to apply fast polynomial-time solvers. However, to solve
these infinite-dimensional problems in practice, they must first
be converted into finite-dimensional problems, and it remains
an open challenge to ensure the theoretical guarantees of LCvx
are maintained across this discretization step. Prior work has
proven guarantees for piecewise constant controls, but these
methods do not extend to piecewise linear controls, which are
more relevant to real world applications.

In this work, we present an algorithm that extends LCvx
guarantees to piecewise linear controls. Under mild assump-
tions, our algorithm provably finds a solution violating the
nonconvex constraints along at most 2nx+2 trajectory “edges”
using O(log(∆ρ/ε)) solver calls (where nx is the state space
dimension and ∆ρ = ρmax − ρmin is the difference in our
control norm bounds). A key feature is the perturbation of the
control norm lower bound and the addition of rate constraints
on the controls, ensuring LCvx holds along the trajectory
edges. Finally, we provide numerical results demonstrating the
effectiveness of our algorithm.

Index Terms—optimal control, trajectory optimization, loss-
less convexification

I. INTRODUCTION

Suppose we are given the following linear time-invariant
dynamical system:

ẋ(t) = Acx(t) +Bcu(t)

where x(t) ∈ Rnx is the system state, u(t) ∈ Rnu is the
control input, and Ac ∈ Rnx×nx , Bc ∈ Rnx×nu define the
dynamics model. In an optimal control problem, the goal is
to minimize a continuous-time cost functional subject to the
system dynamics and additional path constraints. This general
formulation has powerful applications to various areas such
as autonomous driving [1], economic design [2] population
dynamics [3], etc.

If the cost functional and set of feasible controls are convex
then this yields a convex optimization problem which we
hope to solve via fast polynomial-time solvers such as interior
point methods [4], [5]. However, in many aerospace appli-
cations, a common constraint is a nonzero lower and upper
bound on the control norm which introduces nonconvexity
[6]–[9]. As visualized in the left-hand size of Figure 1, this
creates a control feasible set resembling an annulus (or more

Fig. 1. A geometric interpretation of lossless convexification. Left: non-
convex set of feasible controls. Right: convexified set of feasible controls.

generally, a spherical shell in higher dimensions). We use the
following formulation for our problem:

Problem 1.

min
x(t),u(t),tf

m (x (tf )) +

∫ tf

0

lc (∥u(t)∥) dt

s. t. ẋ(t) = Acx(t) +Bcu(t)

ρmin ≤ ∥u(t)∥ ≤ ρmax

x(0) = xinit, G(x(tf )) = 0

where m : Rnx → R is a convex C1 function, lc : R→ R is
a monotonically increasing convex C1 function, G : Rnx →
RnG is an affine map, ρmin < ρmax, and ∥ · ∥ denotes the
Euclidean 2-norm.

The premise of Lossless Convexification (LCvx) is to relax
this nonconvex problem into an equivalent convex problem
by introducing a slack variable σ(t) ∈ R [6]–[9], giving the
following relaxed problem:

Problem 2.

min
x(t),u(t),σ(t),tf

m (x (tf )) +

∫ tf

0

lc (σ(t)) dt

s. t. ẋ(t) = Acx(t) +Bcu(t)

∥u(t)∥ ≤ σ(t) ρmin ≤ σ(t) ≤ ρmax

x(0) = xinit, G(x(tf )) = 0

Note that our control feasible set is now convex as visu-
alized in Figure 1.

Although the new convexified set of feasible controls could
potentially allow for violation of our original nonconvex con-
trol constraints, it can be shown using Pontryagin’s maximum

ar
X

iv
:2

41
1.

18
00

4v
2 

 [
m

at
h.

O
C

] 
 1

8 
Se

p 
20

25

https://arxiv.org/abs/2411.18004v2


principle that the solution to the convexified problem always
satisfies the nonconvex constraints [6]–[10]. In other words,
this is not a relaxation in the usual sense: it does not provide
an approximate solution, but an exact one.

However, in order to solve this problem in practice us-
ing solvers such as CVXPY [11], [12] or ECOS [13], we
must first “discretize” our trajectory into a finite-dimensional
problem. The most common approach is the following:

Definition 1. Given tf , divide our trajectory into N equal
segments

0 = t1 ≤ t2 ≤ · · · ≤ tN+1 = tf

such that ti+1 − ti = tf/N for all i ∈ {1, ..., N}. Let vertex
i denote the point ti and edge {i, i+ 1} denote the interval
[ti, ti+1]. Finally, define:

x = (x1, ..., xN+1), xi = x(ti) ∈ Rnx

u = (u1, ..., uN+1), ui = u(ti) ∈ Rnu

σ = (σ1, ..., σN+1), σi = σ(ti) ∈ R

Given a discretized trajectory, there are several ways to pa-
rameterize our control input. The parameterization discussed
in Luo et al. [14] is piecewise constant control, where the
control along edge {i, i+1} is held constant at ui, giving us
N control variables (one per edge). However, this approach
is often impractical, as many systems cannot instantaneously
switch between control inputs. Therefore, in this paper, we
focus on piecewise linear control, where the control along
edge {i, i+1} is linearly interpolated between ui and ui+1:

u(t) =

(
ti+1 − t

ti+1 − ti

)
ui +

(
t− ti

ti+1 − ti

)
ui+1

giving us N + 1 control variables (one for each vertex).
Using this control parameterization, we can then discretize

our dynamics as

xi+1 = Axi +B0ui +B1ui+1

This is done using the state transition matrices

ΦA(t, ti) =
∂x(t)

∂xi
, ΦB0

(t, ti) =
∂x(t)

∂ui
, ΦB1

(t, ti) =
∂x(t)

∂ui+1

By the chain rule, we have

Φ̇A(t, ti) =
∂ẋ(t)

∂xi
= AcΦA(t, ti)

Φ̇B0
(t, ti) =

∂ẋ(t)

∂ui
= AcΦB0

(t, ti) +Bc

(
ti+1 − t

ti+1 − ti

)
Φ̇B1(t, ti) =

∂ẋ(t)

∂ui+1
= AcΦB1(t, ti) +Bc

(
t− ti

ti+1 − ti

)
with the initial conditions ΦA(ti, ti) = I , ΦB0(ti, ti) = 0,
and ΦB1(ti, ti) = 0. In practice, we can numerically integrate
these to get

A = ΦA(ti+1, ti), B0 = ΦB0
(ti+1, ti), B1 = ΦB1

(ti+1, ti)

Finally, note that tf can be minimized via a linear search.
Thus, for the remainder of this paper, we assume it is fixed as
doing so distills the main contributions of our method. This
yields the following discretized version of the problem:

Fig. 2. Illustration of why LCvx at the vertices is insufficient for piecewise
linear controls. Left: LCvx holding at vertices but not edges. Right: LCvx
holding along the vertices and edges.

Problem 3.

min
x,u,σ

m (xN+1) +

N+1∑
i=1

li (σi)

s. t. xi+1 = Axi +B0ui +B1ui+1 ∀i ∈ {1, ..., N}
ρmin ≤ σi ≤ ρmax, ∥ui∥ ≤ σi ∀i ∈ {1, ..., N + 1}
x1 = xinit, G (xN+1) = 0

Although now our problem is tractable to numerical
solvers, LCvx theory no longer offers guarantees for dis-
cretized problems. It turns out that the solution to Prob-
lem 3 may violate our original nonconvex constraints [14].
Throughout the remainder of this paper, we use the following
terminology:

Definition 2. We say that LCvx holds at vertex i if

ρmin ≤ ∥ui∥ ≤ ρmax

For piecewise linear controls, we say LCvx holds along edge
{i, i+ 1} if

ρmin ≤ ∥u(t)∥ ≤ ρmax ∀t ∈ [ti, ti+1]

Luo et al. show that for piecewise constant controls,
solving the discretized problem ensures LCvx is violated
on at most nx − 1 vertices [14]. However, this result fails
to extend to piecewise linear controls for the following two
reasons:

1) Discretizing with piecewise constant controls gives the
following dynamics:

xi+1 = Axi +Bui

which is fundamentally different from our discretized
dynamics.

2) Even if we have LCvx guarantees at the vertices, this
does not guarantee LCvx along the edges interpolating
them (Figure 2).

The goal of this paper is to address these discrepan-
cies. Section 2 examines the first point, proving an upper
bound on the number of vertices violating LCvx. Section
3 discusses the second point, presenting an algorithm that
extends the LCvx guarantees to the edges of the trajectory.
Finally, Section 4 provides numerical results demonstrating
the correctness of our algorithm on a classical example.



II. LOSSLESS CONVEXIFICATION AT THE VERTICES

In this section, we examine LCvx at the vertices of
our discretized trajectory. Namely, our goal is to provide
sufficient conditions such that LCvx is violated at a minimal
number of vertices.

First, we enumerate all necessary assumptions that will be
used by this section:

Assumption 1. Assume:
1) There exists a feasible trajectory such that ∥ui∥ <

ρmax for all i.
2) A and B0 +AB1 form a controllable pair, i.e.

rank
[
(B0 +AB1) · · · Anx−1(B0 +AB1)

]
= nx

3) Let z = (x, u, σ) ∈ Rnz and express our equality
constraints as H(z) = 0 where affine H : Rnz → RnH .
Then

rank∇H(z) = nH

4) For any solution (x∗, u∗, σ∗), if

x∗
N+1 = argmin

x
m(x) s.t. G(x) = 0

then there exists some ∥u∗
i ∥ > 0.

All of these assumptions are rather mild. Assumption
1.1 says we should be able to get from x1 = xinit to
G(xN+1) = 0 without exerting maximal control effort.
Assumption 1.2 intuitively requires our dynamical system
to be controllable. Assumption 1.3 is a standard assumption
in optimal control theory ensuring independence of our
constraints [14]. Assumption 1.4 requires our system to exert
some non-zero control effort to satisfy our terminal condition
optimally.

Now, we define a couple of useful sets representing the
inequality constraints in our problem:

Definition 3. Define our control feasible set to be:

V = {(u, σ) ∈ Rnu × R : ρmin ≤ σ ≤ ρmax, ∥u∥ ≤ σ)

Denote taking a slice of V at a fixed σ ∈ [ρmin, ρmax] as:

V (σ) = {u ∈ Rnu : ∥u∥ ≤ σ)

We now begin building our conditions with the following
fact.

Lemma 1. If ui is on the boundary of V (σi), then LCvx
holds at vertex i.

Proof. By Definition 3, if ui is on the boundary of V (σi)
then ∥ui∥ = σi. Since ρmin ≤ σi ≤ ρmax, we have ρmin ≤
∥ui∥ ≤ ρmax. Our result follows from Definition 2.

Intuitively, this result states that our control values should
lie on the outer boundary of the convexified set in Figure 1
in order to guarantee LCvx.

To analyze when this is the case, we begin by writing down
the Lagrangian of Problem 3:

Definition 4.

L(x, u, σ, η, µ1, µ2) =

m (xN+1) +

N+1∑
i=1

li (σi)

+

N∑
i=1

η⊤i (−xi+1 +Axi +B0ui +B1ui+1)

+ µ⊤
1 (x1 − xinit) + µ⊤

2 G(xN+1)

+

N+1∑
i=1

IV (ui, σi)

where

IV (ui, σi) =

{
0 if (ui, σi) ∈ V

∞ o.w.

µ1 ∈ Rnx , µ2 ∈ RnG , and η = (η1, ..., ηN ) with ηi ∈ Rnx .

We make the following observation:

Lemma 2. For any primal solution (x∗, u∗, σ∗), there exists
dual variables η∗, µ∗

1, µ
∗
2 such that

(x∗, u∗, σ∗) = arg min
x,u,σ

L(x, u, σ, η∗, µ∗
1, µ

∗
2)

Proof. By Assumption 1.1, we have some a feasible trajec-
tory such that ∥ui∥ < ρmax. For all i, let

σi =
max{∥ui∥, ρmin}+ ρmax

2

Since ρmin < ρmax, this gives ρmin < σi < ρmax and
∥ui∥ < σi. Thus, we have a feasible trajectory satisfying
Slater’s condition. By section 5.9.1 and 5.9.2 of [15], we
have our result.

We can use Lemma 2 along with KKT conditions of opti-
mality to generate the following useful relationships between
our dual variables.

Lemma 3. We have:
1) η∗i−1 = A⊤η∗i ∀i ∈ {2, ..., N}
2) η∗N = ∇m(x∗

N+1) + µ⊤
2 ∇G(x∗

N+1)

Proof. From Lemma 2, we have

x∗ = argmin
x
L(x, u∗, σ∗, η∗, µ∗

1, µ
∗
2)

By the KKT conditions of optimality, we know that
∂

∂xi
L(x, u∗, σ∗, η∗, µ∗

1, µ
∗
2) = 0 for all i. Thus, isolating each

component, we get
i = 1:

µ⊤
1 + η∗⊤1 A = 0

2 ≤ i ≤ N :
η∗⊤i A− η∗⊤i−1 = 0

i = N + 1:

∇m(x∗
N+1) + µ⊤

2 ∇G(x∗
N+1)− η∗N = 0



Using Lemma 2 and 3, we provide our first set of sufficient
conditions for LCvx to hold at a given vertex.

Proposition 1. LCvx holds at vertex i if:
B⊤

0 η∗1 ̸= 0 if i = 1

B⊤
1 η∗N ̸= 0 if i = N + 1

(B0 +AB1)
⊤η∗i ̸= 0 o.w.

Proof. See Appendix A.

To further develop these conditions into a more usable
form, we can leverage the structure imposed by Assumptions
1.2 and 1.3. However, to do so, we must also first introduce a
small perturbation to our dynamics model. More specifically,
define a perturbation to A as follows:

Definition 5. Let A = PJP−1 be the Jordan normal form
of A and λ1, ..., λd be the distinct eigenvalues of A. Given
q ∈ Rd, define a perturbation of A as

Ã(q) = P J̃P−1

where J̃ is obtained by replacing the eigenvalues of J with

(λ̃1, ..., λ̃d) = (λ1, ..., λd) + (q1, ..., qd)

(leaving Jordan blocks unaffected).

Replacing A in Problem 3 with Ã(q) gives us our new
problem:

Problem 4.

min
x,u,σ

m (xN+1) +

N+1∑
i=1

li (σi)

s. t. xi+1 = Ã(q)xi +B0ui +B1ui+1 ∀i ∈ {1, ..., N}
ρmin ≤ σi ≤ ρmax, ∥ui∥ ≤ σi ∀i ∈ {1, ..., N + 1}
x1 = xinit, G (xN+1) = 0

Before we discuss how Assumptions 1.2 and 1.3 and this
perturbation contribute to the LCvx guarantees, we note that
the perturbation does not affect our previous assumptions and
has a negligible affect on the optimal trajectory:

Proposition 2. For any δ > 0, there exists some εA > 0
such that if ∀qi ∈ [−εA, εA], then Problem 4 still satisfies
Assumption 1 and

1) ∥G(x̃N+1)∥ ≤ δ
2) |m(x̃N+1) +

∑N+1
i=1 li(∥u∗

i ∥)−m∗| ≤ δ

where x̃N+1 is achieved by taking x1 = xinit and iterating
xi+1 = Axi + B0u

∗
i + B1u

∗
i+1, and m∗ is the optimal cost

of solving Problem 3 (without perturbation).

Proof. Lemma 16 of [14] tells us that there exists some
sufficiently small ε1 > 0 such that Assumption 1 still holds.
Theorem 19 of [14] tells us that there exists some sufficiently
small ε2 > 0 that gives us the remainder of the result. Taking

εA = min {ε1, ε2}

gives our desired result.

With this, we give our main result regarding LCvx guar-
antees at the vertices.

Theorem 1. Suppose we solve Problem 4 by sampling q ∈
Rd with

qi
i.i.d.∼ Unif[−εA, εA]

If η∗N ̸= 0, then LCvx is violated on at most nx + 1 vertices
with probability 1.

Proof. Given Assumptions 1.2 and 1.3, by Theorem 18 of
[14], we have that if η∗N ̸= 0, then (B0 + AB1)

⊤η∗i = 0 on
at most nx− 1 vertices with probability 1. By Proposition 1,
this guarantees LCvx holds at vertex i when 2 ≤ i ≤ N , but
does not guarantee anything for i = 1 or i = N + 1. Thus,
LCvx is violated on at most nx +1 vertices with probability
1.

At this point it is worth noting that, in practice, the
need for such a perturbation is almost never necessary, and
the discussion of this perturbation method is purely for
theoretical guarantees [14].

For the remainder of this section, we discuss when η∗N ̸= 0.
To do so, we first introduce the following lemma:

Lemma 4. If η∗N = 0, then
1) σ∗

i = ρmin ∀i ∈ {1, ..., N + 1}
2) x∗

N+1 = argminx m(x) s.t. G(x) = 0

Proof. Repeatedly applying Lemma 3.1, we have η∗i =
A⊤(N−i)η∗N . Thus, if η∗N = 0, then η∗i = 0 for all
i ∈ {1, ..., N}. From Lemma 2, we have

(u∗, σ∗) = argmin
σ,u
L(x∗, u, σ, η∗, µ∗

1, µ
∗
2)

= argmin
σ,u

N+1∑
i=1

li (σi) +

N+1∑
i=1

IV (ui, σi)

Since li is monotonically increasing, we have σ∗
i = ρmin and

u∗
i ∈ V (ρmin) for all i ∈ {1, ..., N + 1}.
Next, by Lemma 3.2, we have

η∗N = ∇m(x∗
N+1) + µ⊤

2 ∇G(x∗
N+1) = 0

We see that x∗
N+1 satisfies the KKT conditions of opti-

mality for the convex optimization problem

min
x

m(x) s.t. G(x) = 0

and is thus a minimizer.

Using this lemma, we can now give a more intuitive
condition for when ηN ̸= 0. For a fixed Problem 4, consider
different values of ρmin:

Proposition 3. There exists ρ ∈ (0, ρmax] such that if ρmin <
ρ then η∗N ̸= 0.

Proof. For this proof, we divide into two cases:
Case 1: x∗

N+1 ̸= argminx m(x) s.t. G(x) = 0, implying
η∗N ̸= 0 by the contrapositive of Lemma 4. Since this holds
for any ρmin < ρmax, we can simply take ρ = ρmax.



Case 2: x∗
N+1 = argminx m(x) s.t. G(x) = 0. By As-

sumption 1.4, there is some ∥u∗
i ∥ > 0. Choose ρ = ∥u∗

i ∥/2.
Then for all ρmin < ρ,

ρmin < ρ < ∥u∗
i ∥ ≤ σ∗

i

Thus, by the contrapositive of Lemma 4, η∗N ̸= 0.

Intuitively, Proposition 3 says that if ρmin is sufficiently
small, then η∗N ̸= 0. As a note, [14] makes a similar remark,
observing that η∗N ̸= 0 if tf is sufficiently small. Using
Proposition 3, we include the following helper definition:

Definition 6. Let

ρ+min = sup{ρ ∈ (0, ρmax] : ρmin < ρ =⇒ η∗N ̸= 0}

This upper bound will prove useful in our algorithm
development in the next section.

III. LOSSLESS CONVEXIFICATION ALONG THE EDGES

At this point, we have proven sufficient conditions for
LCvx to hold at the vertices of our trajectory. In this section,
we present an algorithm that extends this guarantee to the
edges of our trajectory.

First, we again define a new problem. Given a perturbed
lower bound on our control norm ρ̃min ∈ [ρmin, ρmax),
define:

Problem 5.

min
x,u,σ

m (xN+1) +

N+1∑
i=1

li (σi)

s. t. xi+1 = Ã(q)xi +B0ui +B1ui+1, ∀i ∈ {1, ..., N}
ρ̃min ≤ σi ≤ ρmax, ∥ui∥ ≤ σi ∀i ∈ {1, ..., N + 1}
x1 = xinit, G (xN+1) = 0

∥ui+1 − ui∥ ≤ δ(ρ̃min) ∀i ∈ {1, ..., N}

where
δ(ρ̃min) = 2

√
ρ̃2min − ρ2min

Note that ρ̃min replaced ρmin and we introduced an addi-
tional rate constraint ∥ui+1−ui∥ ≤ δ(ρ̃min). The purpose of
this modification is illustrated in the following result:

Lemma 5. If ρ̃min ≤ ∥ui∥ ≤ ρmax and ρ̃min ≤ ∥ui+1∥ ≤
ρmax with ∥ui+1 − ui∥ ≤ δ(ρ̃min), then ρmin ≤ ∥u(t)∥ ≤
ρmax along edge {i, i+ 1}.

Proof. See Appendix B.

Although this new rate constraint seems helpful, its addi-
tion fundamentally changes the structure of our optimization
problem and thus we do not have any of the LCvx guarantees
at the vertices from the previous section. In order to address
this, we begin with the following assumption:

Assumption 2. There exists ρ ∈ [0, ρ+min) such that if we
solve Problem 5 without the rate constraint and ρ̃min > ρ,
then

δ(ρ̃min) > max
1≤i≤N

∥u∗
i+1 − u∗

i ∥

In other words, if ρ̃min is sufficiently large then the
rate constraint is redundant (i.e. introduces no additional
restrictions to our problem), ensuring all previous results still
hold. We purposefully weaken the implication in the above
assumption to define an even smaller lower bound:

Definition 7. Let

ρ−min = inf{ρ ∈ [0, ρmax) : ρ̃min > ρ =⇒ Theorem 1 holds}

We summarize the previous results into the following
proposition establishing the existence of an interval over
which we have LCvx guarantees along the edges:

Proposition 4. There exists

ρmin ≤ ρ−min < ρ+min ≤ ρmax

such that if we solve Problem 5 with ρ̃min ∈ (ρ−min, ρ
+
min)

(and q ∈ Rd sampled according to Theorem 1) then LCvx is
volated along at most 2nx + 2 edges.

Proof. Proposition 3 and Assumption 2 proves existence of
ρmin ≤ ρ−min < ρ+min ≤ ρmax. By Definition 6 and 7, if
ρ̃min ∈ (ρ−min, ρ

+
min) then we can invoke Theorem 1 with

η∗N ̸= 0. Thus, solving Problem 5 violates ρ̃min ≤ ∥u∗
i ∥ ≤

ρmax on at most nx + 1 vertices.
Lemma 5 only holds when both ρ̃min ≤ ∥u∗

i ∥ ≤ ρmax and
ρ̃min ≤ ∥u∗

i+1∥ ≤ ρmax. Thus, if our nonconvex constraint is
violated at vertex i, then LCvx may be violated along edges
{i − 1, i} and/or {i, i + 1}. Since there are at most nx + 1
vertices where this can happen, we have at most 2nx + 2
neighboring edges where LCvx may be violated.

See Figure 5 for a visualization of (ρ−min, ρ
+
min) on a

real example. Finally, given the existence of this “feasible”
interval, we can search for such an interval using the previous
conditions and then minimize the cost within the interval
using a ternary search. This gives rise to Algorithm 1.

Theorem 2. Given a sufficiently small ε > 0, Algorithm
1 finds a minimizing solution to Problem 5 violating LCvx
along at most 2nx + 2 edges in the trajectory in

O

(
log

(
ρmax − ρmin

ε

))
calls to our solver.

Proof. Let ρ̃min ∈ [ρmin, ρmax]. If η∗N ̸= 0 and LCvx is
violated at more than nx+1 then Theorem 1 is violated and
thus ρ̃min ≤ ρ−min by Definition 7. If ηN = 0 then ρ̃min ≥
ρ+min by definition 6. Furthermore, by Proposition 4, we can
initialize our ternary search with ρlow = ρmax and ρhigh =
ρmax.

Furthermore, by section 5.6.1 of [15], our cost is convex
(i.e. unimodal) with respect to ρ̃min. Thus, once ρlow and ρhigh
fall within our “feasible” interval (guaranteed by sufficiently
small ε > 0), our algorithm is guaranteed to converge to the
optimal cost in O(log(∆ρ/ε)) steps.



Algorithm 1 Picewise Linear Lossless Convexification
Require: Ac, Bc, ρmin, ρmax, εA, ε

1: (A,B0, B1)← integrate Ac and Bc

2: q ← sample qi ∼ Unif[−εA, εA] for i ∈ {1, ..., d}
3: Ã(q)← perturb A with q
4: ρlow ← ρmin

5: ρhigh ← ρmax

6: while ρhigh − ρlow > ε do
7: ρ1 ← ρlow + (ρhigh − ρlow)/3
8: ρ2 ← ρhigh − (ρhigh − ρlow)/3
9: (cost∗1, u

∗
1, η

∗
1)← solve Problem 5 for ρ̃min = ρ1

10: (cost∗2, u
∗
2, η

∗
2)← solve Problem 5 for ρ̃min = ρ2

11: if (η∗1)N ̸= 0∧
∑

i 1(∥(u∗
1)i∥ < ρmin) > nx+1 then

12: ρlow ← ρ1
13: else if (η∗2)N = 0 then
14: ρhigh ← ρ2
15: else
16: if cost∗1 > cost∗2 then
17: ρlow ← ρ1
18: else
19: ρhigh ← ρ2
20: end if
21: end if
22: end while
23: (x∗, u∗)← solve Problem 5 for ρ̃min = (ρlow + ρhigh)/2
24: return (x∗, u∗)

IV. RESULTS

In this section, we apply our algorithm to the classical
double-integrator trajectory optimization problem, where the
system is an agent controlled solely through acceleration
and the objective is to minimize the total control effort.
Let x = (px, py, pz, vx, vy, vz)

⊤ be our state vector and
u = (ax, ay, az)

⊤ be our control vector where p ∈ R3 is
position, v ∈ R3 is velocity, and a ∈ R3 is acceleration. Our
dynamical system can be expressed as:


ṗx
ṗy
ṗz
v̇x
v̇y
v̇z

 =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

Ac


px
py
pz
vx
vy
vz

+


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

Bc

axay
az



Consider the following trajectory optimization problem:

min
x(t),u(t)

100∥x(4)− (10, 10, 10, 0, 0, 0)⊤∥+
∫ 4

0

∥u(t)∥2dt

s. t. ẋ(t) = Acx(t) +Bcu(t)

4 ≤ ∥u(t)∥ ≤ 6 ∀t ∈ [0, 4]

x(0) = (0, 0, 0, 0, 0, 10)⊤

First, it can be verified that all of the conditions for
Assumptions 1 and 2 are met. In particular with regards

to Assumption 2, if we solve Problem 5 without the rate
constraint and ρ̃max = 4.5 then

δ(ρ̃max) ≈ 4.123 > 3.322 ≈ max
1≤i≤N

∥u∗
i+1 − u∗

i ∥

and this inequality continues to hold for all ρ̃max > 4.5.
Solving the problem using piecewise constant controls and

the single-shot method from Luo et al. with N = 16 yields
the trajectory shown in Figure 3. Meanwhile, solving the
problem using piecewise linear controls and Algorithm 1 with
N = 16 and ε = 10−3 yields the trajectory shown in Figure
4. In the control plot for our method, observe how the linear
interpolation of the control values appear tangent to the inner
ball, demonstrating how the controls are satisfying the norm
lower bound while maintaining minimal cost. A zoomed in
version is shown on the right-hand side of Figure 2.

Also, as seen in Figure 5, ρ−min ≈ 4.026 and ρ+min ≈ 5.105.
Note that the plotted points in Figure 5 are colored red if
LCvx is violated at more than nx + 1 vertices, orange if
η∗N = 0, and blue otherwise. Our algorithm converges to
ρ̃min ≈ 4.098. When ρ̃min = 4.025 and ρ̃max = 5.5, LCvx
is being violated as expected.

V. CONCLUSION

In this paper, we continue the line of work extending LCvx
theory to the discrete-time setting, and in particular to optimal
control problems with piecewise linear controls, addressing
a significant gap in the existing LCvx literature and allowing
a new class of nonconvex optimal control problems to be
solved via numerical methods. Specifically, we present an
algorithm that, under mild assumptions, finds an optimal
trajectory where LCvx is violated along at most 2nx + 2
edges in O(log(∆ρ/ε)) calls to our solver. The main insights
of this paper were that given LCvx guarantees on the vertices,
we can extend this guarantee to the edges by perturbing the
control norm lower bound and adding a rate constraint on our
controls. Finally, we showcase this algorithm on a classical
numerical example, demonstrating the effectiveness of the
methods outlined in this paper.

Future research directions include exploring other discrete-
time nonconvex optimal control problems such as problems
with different cost functionals, path constraints, and con-
trol parameterizations. More broadly, this work represents a
step toward understanding the limitations of current LCvx
theory and developing increasingly general algorithms ca-
pable of solving nonconvex optimal control problems with
continuous-time constraint satisfaction in practice.

VI. ACKNOWLEDGMENTS

This work was completed as part of the University of
Washington Autonomous Controls Laboratory under the su-
pervision of Dr. Behçet Açıkmeşe. Special thanks to Dayou
Luo for his research that informed this work and his valuable
feedback on this write-up.



Fig. 3. Results for LCvx with piecewise constant controls. Left: optimal trajectory. Middle: control magnitudes. Right: control plot.

Fig. 4. Results for LCvx with piecewise linear controls. Left: optimal trajectory. Middle: control magnitudes. Right: control plot.

Fig. 5. Left: cost vs ρ̃min. Middle: control magnitudes for ρ̃min = 4.025. Right: control magnitudes for ρ̃min = 5.5.

REFERENCES

[1] W. Xiao, N. Mehdipour, A. Collin, A. Bin-Nun, E. Frarzzoli, R. Duint-
jer Tebbens, and C. Belta, “Rule-based optimal control for autonomous
driving,” in International Conference on Cyber-Physical Systems, 2021.

[2] T. Weber, Optimal Control Theory with Applications in Economics.
MIT Press, 2011.

[3] V. Barbu and M. Iannelli, “Optimal control of population dynamics,”
Journal of Optimization Theory and Applications, vol. 102, 1999.

[4] A. Nemirovski, “Interior point polynomial time methods in convex
programming,” Lecture notes, vol. 42, no. 16, pp. 3215–3224, 2004.

[5] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed.
Springer, 2006.

[6] B. Açıkmeşe and S. Ploen, “A powered descent guidance algorithm for
mars pinpoint landing,” in AIAA Guidance, Navigation, and Control
Conference and Exhibit, 2005.

[7] B. Açıkmeşe and L. Blackmore, “Lossless convexification of a class
of optimal control problems with non-convex control constraints,”
Automatica, vol. 47, no. 2, pp. 341–347, 2011.

[8] B. Açıkmeşe, J. M. Carson, and L. Blackmore, “Lossless convexi-
fication of nonconvex control bound and pointing constraints of the
soft landing optimal control problem,” IEEE transactions on control
systems technology, vol. 21, no. 6, pp. 2104–2113, 2013.

[9] M. W. Harris and B. Açıkmeşe, “Lossless convexification of non-
convex optimal control problems for state constrained linear systems,”
Automatica, vol. 50, no. 9, pp. 2304–2311, 2014.

[10] L. Berkovitz, Optimal Control Theory. Springer, 1974.
[11] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling

language for convex optimization,” Journal of Machine Learning
Research, vol. 17, no. 83, pp. 1–5, 2016.

[12] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd, “A rewriting
system for convex optimization problems,” Journal of Control and
Decision, vol. 5, no. 1, pp. 42–60, 2018.

[13] A. Domahidi, E. Chu, and B. Stephen, “ECOS: An SOCP solver for
embedded systems,” in 2013 European Control Conference (ECC),
2013, pp. 3071–3076.

[14] D. Luo, K. Echigo, and B. Açıkmeşe, “Revisiting lossless con-
vexification: Theoretical guarantees for discrete-time optimal control
problems,” Automatica, vol. 183, 2026.

[15] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[16] J. Borwein and A. Lewis, Convex Analysis. Springer, 2006.
[17] H. Bauschke, Convex Analysis and Monotone Operator Theory in

Hilbert Spaces. Springer Science & Business Media, 2011.
[18] G. Strang, Introduction to Linear Algebra, Fifth Edition. Wellesley-

Cambridge Press, 2016.



APPENDIX

A. Proof of Proposition 1.

Proof. From Lemma 2, we have

u∗ = argmin
u
L(x∗, u, σ∗, η∗, µ∗

1, µ
∗
2)

Isolating each ui and applying Lemma 3.1, we have
i = 1:

u∗
1 = argmin

u1

IV (u1, σ
∗
1) + η∗⊤1 B0u1

= argmin
u1

η∗⊤1 B0u1 s.t. u1 ∈ V (σ∗
1)

2 ≤ i ≤ N :

u∗
i = argmin

ui

IV (ui, σ
∗
i ) + η∗⊤i B0ui + η∗⊤i−1B1ui

= argmin
ui

IV (ui, σ
∗
i ) + η∗⊤i B0ui + (η∗⊤i A)B1ui

= argmin
ui

η∗⊤i (B0 +AB1)ui s.t. ui ∈ V (σ∗
i )

i = N + 1:

u∗
N+1 = arg min

uN+1

IV (uN+1, σ
∗
N+1) + η∗⊤N B1uN+1

= arg min
uN+1

η∗⊤N B1uN+1 s.t. uN+1 ∈ V (σ∗
N+1)

Since all of these are convex optimization problems, it
follows from Proposition 2.1.2 of [16] that
i = 1:

− ∂

∂u1

[
η∗⊤1 B0u1

]
= −B⊤

0 η∗1 ∈ NV (σ∗
1 )
(u∗

1)

2 ≤ i ≤ N :

− ∂

∂ui

[
η∗⊤i (B0 +AB1)ui

]
= −(B0 +AB1)

⊤η∗i

∈ NV (σ∗
i )
(u∗

i )

i = N + 1:

− ∂

∂uN+1

[
η∗⊤N B1uN+1

]
= −B⊤

1 η∗N ∈ NV (σ∗
N+1)

(u∗
N+1)

where NV (σ∗
i )
(u∗

i ) denotes the normal cone of convex set
V (σ∗

i ) at point u∗
i .

By Corollary 6.44 of [17], NV (σ∗
i )
(u∗

i ) has nonzero ele-
ments only on the boundary of V (σ∗

i ). By Lemma 1, we have
our result.

B. Proof of Lemma 5.

Proof. Without loss of generality, assume ∥ui∥ ≤ ∥ui+1∥.
Recall that u(t) linearly interpolates ui and ui+1:

u(t) =

(
ti+1 − t

ti+1 − ti

)
ui +

(
t− ti

ti+1 − ti

)
ui+1

We now examine the minimum value of ∥u(t)∥ for t ∈
[ti, ti+1] and divide into two cases:

Case 1: ∥u(t)∥ is minimized at the endpoints. Since ∥ui∥ ≤
∥ui+1∥, this must be at t = ti and thus

∥u(t)∥ ≥ ∥ui∥ ≥ ρ̃min ≥ ρmin

Case 2: ∥u(t)∥ is not minimized at the endpoints. Then,
by section 4.2 of [18], the minimal value of ∥u(t)∥ is the

perpendicular distance from the origin to the line L passing
through ui and ui+1. Let projLui denote the projection of ui

onto L. Then

∥u(t)∥ ≥ ∥ui − projLui∥

=
√
∥ui∥2 − ∥projLui∥2

=

√
∥ui∥2 −

∥∥∥∥u⊤
i (ui+1 − ui)

∥ui+1 − ui∥2
(ui+1 − ui)

∥∥∥∥2
=

√
∥ui∥2 −

(
|u⊤

i (ui+1 − ui)|
∥ui+1 − ui∥

)2

Note that

∥ui+1 − ui∥2 = ∥ui+1∥2 + ∥ui∥2 − 2u⊤
i ui+1

By the triangle inequality,

∥ui+1∥ ≤ ∥ui∥+ ∥ui+1 − ui∥

Combining the above gives

u⊤
i (ui+1 − ui) = u⊤

i ui+1 − ∥ui∥2

=
∥ui+1∥2 + ∥ui∥2 − ∥ui+1 − ui∥2

2
− ∥ui∥2

=
∥ui+1∥2 − (∥ui∥2 + ∥ui+1 − ui∥2)

2
≤ 0

Thus,

|u⊤
i (ui+1 − ui)| =

∥ui+1 − ui∥2 + ∥ui∥2 − ∥ui+1∥2

2

Since ∥ui∥ ≤ ∥ui+1∥ and 0 < ρmin ≤ ρ̃min,

|u⊤
i (ui+1 − ui)|
∥ui+1 − ui∥

=
∥ui+1 − ui∥2 + ∥ui∥2 − ∥ui+1∥2

2∥ui+1 − ui∥

≤ ∥ui+1 − ui∥2

2∥ui+1 − ui∥

=
∥ui+1 − ui∥

2

≤ δ(ρ̃min)

2

=
√
ρ̃2min − ρ2min

≤ ρ̃min

≤ ∥ui∥

Plugging this back into our initial inequality, we have

∥u(t)∥ ≥

√
ρ̃2min −

(√
ρ̃2min − ρ2min

)2

= ρmin

Finally, since ∥u∥ ≤ ρmax is convex, if ∥ui∥ ≤ ρmax and
∥ui+1∥ ≤ ρmax, then the linear interpolations u(t) between
them must obey ∥u(t)∥ ≤ ρmax by definition. Thus, ρmin ≤
∥u(t)∥ ≤ ρmax for all t ∈ [ti, ti+1].


